Context Determines Content

An Approach to Resource Recommendation in **Folksonomies**

RSWeb_Context_Content_v4.0 __20120908_MA

Mojisola Anjorin

Christoph Rensing

© author(s) of these slides including research results from the KOM research network and TU Darmstadt; otherwise it is specified at the respective slide

Prof. Dr.-Ing. Ralf Steinmetz

Overview

- Motivation
- Context of an Entity in a Folksonomy
- VSScore Framework
- Evaluation Methodology and Metrics
- Results
- Conclusion & Future Work

Challenge: Concept Drift

Concept drift is a challenge for graph-based ranking algorithms

 e.g. Ambiguous tags can cause concept drift as a single tag might represent multiple semantic concepts

KOM – Multimedia Communications Lab

3

Assumption on the Context of an Entity

The context of an entity in a folksonomy describes the entity well

Assumptions on a Folksonomy's Content and Structure

Tags of a resource describe the resource's content well

[adapted from Abel 2011]

- Tags of a user describe the user's interests well
- Resources of a user describe the user's interests well
- Resources of a tag describe the tag's semantic well
- Users of a tag describe the tag's semantic well
- Users of a resource describe the resource's content well

Assumption on the Context of an Entity e in a Folksonomy

The context of an entity e is given by the strength of relations between e and other entities in the folksonomy

Assumption on the Context of an Entity e in a Folksonomy

A vector s created with a ranking algorithm (e.g. FolkRank) for a single query entity e, describes the relationship between e and other entities in the folksonomy well

Assumption on the Context of an Entity e in a Folksonomy

A vector s created with a ranking algorithm (e.g. FolkRank) for a single query entity e, describes the relationship between e and other entities in the folksonomy well

Vector Space Score (VSScore)

VSScore is a flexible framework which incorporates context-specific information into the recommendation process

Based on the vector space model

Vector Space Score (VSScore)

VSScore is a flexible framework which incorporates context-specific information into the recommendation process

- Based on the vector space model
- Creates a vector representation of semantic concepts for each entity in the folksonomy using a ranking algorithm e.g. FolkRank [Hotho et al. 2006]

Vector Space Score (VSScore)

VSScore is a flexible framework which incorporates context-specific information into the recommendation process

- Based on the vector space model
- Creates a vector representation of semantic concepts for each entity in the folksonomy using a ranking algorithm e.g. FolkRank [Hotho et al. 2006]
- Applies the cosine similarity to calculate the distance between these vectors

Overview

- Motivation
- Context of an Entity in a Folksonomy
- VSScore Framework
- Evaluation Methodology and Metrics
- Results
- Conclusion & Future Work

Evaluation Ranking Tasks

Interests Match

User as query node

Guided Search

[adapted from Bogers 2009]

Evaluation Methodology: LeavePostOut

A post is a $P_{u,r}$ = {(u,r,t)|(u,r,t) \in Y}

For LeavePostOut, the recommendation task with user as input is harder as with tag as input

[Jäschke et al. 2007]

Evaluation Methodology: LeaveRTOut

 $RT_{r,t} = \{(u,r,t) | (u,r,t) \in Y\}$ Dancing Dancing Tango Tango Festival Festival Oestehoy.com Oestehoy.com Folklore v Tango, en las plaza Folklore v Tango, en las plaza Buenos Buenos Aires Aires welcome

For LeaveRTOut, the recommendation task with tag as input is harder as with user as input

Evaluation Metrics

Mean Average Precision:

$$\mathbf{MAP}(\mathbf{Q}) = \frac{1}{|\mathbf{Q}|} \sum_{j=1}^{|\mathbf{Q}|} \frac{1}{\mathbf{m_j}} \sum_{k=1}^{\mathbf{m_j}} \mathbf{Precision}(\mathbf{R_{jk}})$$

The mean of the Average Precision over several queries Q

[Manning et al 2008]

Mean Normalized Precision:

$$\mathbf{MNP}(\mathbf{Q}, \mathbf{k}) = \frac{1}{|\mathbf{Q}|} \sum_{\mathbf{j}=\mathbf{1}}^{|\mathbf{Q}|} \frac{\mathbf{Precision}_{\mathbf{j}}(\mathbf{k})}{\mathbf{Precision}_{\max, \mathbf{j}}(\mathbf{k})}$$

The mean of the normalized Precision at k (with respect to the maximal achievable Precision at k) over several queries Q

e.g. for LeavePostOut with k = 10, Precision_{max}(k) = 1/10

Evaluation Corpus

Bibsonomy corpus with p-core extraction at level 5 to reduce noise and to focus on the dense portion of the corpus

	Before	After
Users	7243	69
Bookmark resources	281550	9
Bibtex resources	469654	134
Tags	216094	179
Tag assignments	2740834	3269
Bookmark posts	330192	51
Bibtex posts	526691	959

FReSET – Domínguez García et al 2012 http://www.kom.tu-darmstadt.de/research-results/downloads/software/freset/

KOM – Multimedia Communications Lab 16 Knowledge and Data Engineering Group, University of Kassel: Benchmark Folksonomy Data from Bibsonomy, version of July 7th 2011 **Visualization of Results with Violin Plots**

KOM – Multimedia Communications Lab 17

Evaluation Results for LeavePostOut

Evaluation results for recommendation task Interests Match

(Popularity of a resource is calculated as the sum of tags and users of a resource)

Evaluation Results for LeavePostOut

Evaluation results for recommendation task Interests Match

Approaches	MAP
VSScore	0.1972
FolkRank	0.1809
Popularity	0.0943

Evaluation Results for LeaveRTOut

Evaluation results for recommendation task Guided Search

Evaluation Results for LeaveRTOut

Evaluation results for recommendation task Guided Search

Approaches	MAP
Popularity	0.0834
VSScore	0.0592
FolkRank	0.0529

Pairwise comparisons based on Average Precision with significance level of p = 0.05

- Scenario A: User-based resource recommendation
- Scenario B: Ranking of user's resources
- Scenario C: Tag-based resource recommendation

Methodology	Interests Match	Guided Search
LeavePostOut	VSScore ^A	VSScore ^C
LeaveNPostsOut	VSScore ^A	FolkRank ^C , VSScore ^C
LeaveRTOut	FolkRank ^B	VSScore ^C
LeaveNRTsOut	FolkRank ^B	VSScore ^C

Wilcoxon signed-rank tests

Conclusion and Future Work

VSScore is a Framework leveraging context-specific information inherently found in a folksonomy for resource recommendation.

Limitations

 VSScore is computationally complex, therefore evaluations were performed on a limited corpus size

Future Work

- Reduce high-dimensional vector space to reduce computational complexity
- Evaluate on larger corpora from different domains
- Investigate further recommendation scenarios e.g. tag or user recommendation

Questions & Contact

Department of Electrical Engineering and Information Technology Multimedia Communications Lab - KOM

Dipl.-Inform. Mojisola Anjorin

Mojisola. Anjorin @KOM. tu-darm stadt. de

Rundeturmstr. 10 64283 Darmstadt Germany Phone +49 (0) 6151/166160 Fax +49 (0) 6151/166152 www.kom.tu-darmstadt.de

